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~ THE CHANGING SCENE IN COMPUTATIONAL FLUID DYNAMICS

AFOSR-TR- 84-0115

Maurice Holt

Department of Mechanical Engineering
University of California
Berkeley, California

L\ U.S.A.

AThe evolution of numerical techniques for soiving problems in
Fluid Dynamics is followed, in outline, from the days when Digit
Computers were first available, at the end of the Second orld
to the present time, when the Cu.puter Aerodynamic Simulator is
being assembled. In this period the range of numerical methods
has been broadened five fold, while the speed and capacity of
computers have increased by several orders of magnitude. Two
areas close to the author's interests are selected toc illustrate
these changes. The first concerns the extension of the Method
of Integral Relaticns to apply to leminar and turbulen® boundary
layer problems, including internal flows, separated flows and
turbulent mixing fiows. The second area deals witn unsteady
inviscid compressible flow in one or more dimensions anc a dis- 4
cussion is given of the relative merits of Godunov and Glimm

techniques.f:\\
INTRODUCTION

Tne need for numerical, as distinct from analytical, methods to solve problans in
Fluid Dynamics first arose when problems in Gas Dynamics presented themselves.
These are connectad with combustion and explosive processes and are essentially
non-linear. The equations of motion governing such problems are hyperbolic and,
in principle, could be soived numericaily by the Metnod of Characteristics. This
has a long history going back to the pioneer paper by Massau (1530). The founda-
tions of the method are laid out in Courant, Friedrichs arnd Lewy (1928) and
developed for application in Courant and Friedrichs (15378).
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Two difficulties arise in applying the Method of Characteristics to Cas Cynamic
problems. Firstly, shock waves appear freguently in such problers ana need o o
fitted on an ad hoc basis into the characteristic network. Secondiy, this netncrk
does not have unifeorm mesh spacing, is non-orthogonal, curvilinear and Treguently
highly skewed.

One of the earliest methods avoiding these drawbacks was the Finite Difference
method of von Neumann and Richtmyer (1950). This applied to unsteady spherical
flow in Lagrangian coordinates, using fin.te differences in tne original ortrcan-
nal independent variables, and treated shocks by the introduction of artificial
viscosity. This was refined later in the well-known Lax-WHendrof€(1954) method.
The development of these methods is weil described in Richtmyer and Morton (1972}.

The search for better numerical techniaues to soive Gas Dynamic probiems was given
further impetus in the Sputnik era, with the need to solve the flow fieid probiem
for a space vehicle on re-entry into the earth's atmosphere, the so-called Blurt
Body problem.

This led to a spate of new techniques, mostly develcped in the USSR. Firstly,
Godunov's method (1959) was presented as a ncvel way to solve the Lagrangian eaua-
tion in unsteady flow but grew into one for sclving the unsteady Culerian equa-
tions in two and three dimensicns —yielding the soluticn to the Llunt pody probien
as the steady fiow, asymptotic, limit of the unsteady solution. Godunov used
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discontinuity breakdown formulae, in place of finite difference formulae, a sig-
nificant departure from the previous approaches of Lax-Wendroff and others.

A solution to the blunt body problem predating that of Godunov was obtained by
Belotserkovskii (1958) who solved the equations of steady motion for synretrical
flow past a circular cylinder or sphere, of mixed elliptic-hyperbolic type, by

the first formulation of the Method of Integral Relations due to Dorodnitsyn
(1956). In this method moments of the equations of motion are intejrated across
the flow field, the integrands are represented by suitable interpolation functicns
and the problem is reduced to the integration of ordinary differentiel equations
in the coefficients of these functions.

The steady flow version of the Blunt Body problem was also solved by Talenin's
method (Gilinskii, Telenin and Tinyakov, 1964), in which the unknown is repre-
sented by an interpolation function in one of the coordinates, in the originel
equations of motion. The Method of Lines (Jones and South, 1979) is a similar
technique applied over three or five mesh points instead of over the whole flcw
field.

The last method developed for high speed steady flow problems is due o Babenkc

and others. The version applied to purely supersonic flow is by Eabenko,
Voskresenskii, Lyubimov and Rusanov (1964) while the blunt body version was
developed by Lyubimov and Rusanov (1970). This is a sophisticatea finite dif-
ference method applicable to any steady high speed inviscid flow problem, especial-
ly in three dimensions.

‘When viscous effects are important we need to solve the Navier-Stokes equations,
either in their original, or approximate, boundary layer form. The full equations
are non-linear and elliptic. Several Finite Difference metnods nave been developed
for these but they become prohibitively expensive as tne governing reynolds numdar
is increased. In the low speed range Finite Element methods have been proposed

for flow fields limited by boundaries (cavities and steps) while Spectral methods
have been used for investigation of flow Structures in uniimited regions. A full
account of these is given in'Peyret-Taylor (1983).

In many applications viscous effects only need to be considered near boundaries
and it is sufficient to solve the boundary layer equations in these regions in
interaction with inviscid flow in the outer regions. Many finite difference meth-
ods have been developed for the boundary layer equations. At the present time,
however, these can be replaced by more recently developed techniques such as the
Method of Integral Relations, Finite Element methods, Galerkin techniques and
Spectral Methods. These are described in full detail by Fletcher {1983).

The remainder of this article deals with two topics connected with the author's
own research, Recent Applications of the Method of Integral Relations to Turbulent
and Internal Flows and Recent Developments in Methods for Problems in Gas Dynamics
and Propagation of Large Amplitude Surface MWaves.

RECENT APPLICATIONS OF THE METHOD OF INTEGRAL RELATIONS

The Method of Integral Relations was first formulated for Viscous Incompressibie
Boundary Layer Problems by Dorodnitsyn (1960). This formulation was cxtended to
compressible flows by Pavlovskii (1963) and to flows with wall injection by Liu
(1962). The early applications were all to attached flows but extensions o the
method to apply to separated and reversed flows were made by Nielsen, Goodwin and
Kuhn (1969) and by Holt (1966,1967) and Holt and Lu (1975).

In the original formulation the basic integral relation ic derived by factoring
the continuity equation by one of a set of weighting functions f(u) and the
streamwise monentum equation by its derivative f'(u) where u is the streamwise
velocity component. The results are added and integrated across the boundary
layer, using u, rather than n (the transverse coordinate), as variable of integra-
tion. The functions f(u) belong to a complete set and taken in fact as integral
powers of {1-u) [u is made dimensionless with respect to velocity just outside

the boundary layer]. The integrands in the integral relation contain the unknown
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transverse velocity gradient su/sn, which, in the Dorodnitsyn formulation, is
represented as a polynomial in u, factored by a term (1-u) to ensure approach
to zero at the boundary layer edge. Successive integral relations in the nth
approximation yield n ordinary differential equations for the coefficients in
the (5u/dn) polynomial. The matrix of these equations (for the first deriva-
tives) is dense and the system becomes progressively more ill-conditioned as
the order of approximation is increased.

To eliminate this defect Fietcher and Holt (1975) proposed a modified formulation
of the Method of Integral Relations. In this, the weighting functions f(u)
belong to a complete orthonormal set in (0,1). Moreover, the unknown (zu/sn) is
expanded in combinations of the same orthonormal set, factored by (1-u). The
resulting ordinary differential equations for the coefficients in the expansion
then have a sparse matrix with diagonal elements only. The integrals which
occur can all be evaluated by quadratures and the modified version can be applied
to attached flows at any level of approximation.

The extension of the Dorodnitsyn MIR to separated flows introduces a great deal
of tedious algebra, even in the lowest order approximation and it would be useful
to extend the Fletcher:Holt modified version for suca flows. The difficulty here
is that a factor (u+u)2 must be included in the representation of (Lu/cr) to take
account of reversed flow between u =0 (at the wall) and u =-c, with a vertical
tangent in the 3u/on -u curve at u =-q.

A possible orthonormal formulation for separated flows is now given, developed
as a course term project at the University of California, Berkeley by 0. Jzcan
and R.-J. Yang. This uses Chebychev polynomials. This is followed by &n ortho-
normal formulation of MIR for turbulent boundary layers, applied to madel turdu-
lent flows by Yeung and Yang {1981) and to thc turbulent wall jet problem by
Yang and Holt (1983).

ORTHONORMAL FORMULATION OF MIR FOR SEPARATING FLOWS

When the original Method of Integral Relations is applied to the incompressible
laminar boundary layer equations in Dorodnitsyn variables, the following basic
integral relation results

JB U] B( 2 () fé(u)|B f"
— | uf 0du = ——-J 1-u®)f (u)édu + |- J ——-du
dc 0y I k CH A P
i ] (1)
+ uf l — - uf I - wf (u s
klg dE kly g€ kY

where £ is the streamwise coordinate, u the velocity component in the & direction,
® the reciprocal of (3u/an), n the transverse coordinate and f (u) are weignting
functions. The points A and B correspond to the u limits of integration over the
section of boundary layer in question. The values ny,sn2 correspond to n at A and
B, respectively.

The velocity field is divided into two parts in the attached (but retarded)
boundary layer region and into three parts in the separated region,

Attached flow

In the velocity range 0 <u <e, where € is SW?A}O&CEOFP])' 6 is represented by
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0 = -—~c—°~—-—— (2)
(u+a)*(1-u)

The following two weighting functions are chosen to simplify the calculation of
the integrals in Eq. (1) .

flu) = (emu)(1ou) (wra)™® , km1,2 (3)

Equations (2) and (3) are substituted in Eq. (1) to yield two ordinary differen-
tial equations for o and «

& Lo - iege) L k12 @

where E; are polynomials in «, and Fy are polynomials in x, Tinear in Co» With
coefficients containing ¢.

In the velocity range € <u <1, 8 is represented by the following expression
N N"] b.‘ »’L_T:c? g1 +g~i

1 ,
p=—>L  [b+I I
(u+a)%(1—u) 0 =2 j=1 u(I-u)3/4 Vu-e

together with weighting functions

£ = (1—u)5/4 9 (6) ki

k
where g, are Chebychev polynomials, i and k are even, j is odd.
The orthogonality condition for these polynomials is

— dU = (7)

J+] gi(U)gk(U) /2 when i =k
-1 (1-8) 0 when i £k

The Timits of integration ¢ »1 are changed to -1 =1 by means of the change in

variable
_ 1
U-';_T[e+] -2u] . (8)
We can show that
g. +9,
Lt ———L=0
u+e (u-g)*
U-+-1

Hence, matching expressions (2) and (5) at u =g,

a, = bo
Substitution of Eqs. (5) and (6) in Eq. (1) yields
T (N-4) Pk, C'(k) k =1 N (9)
5 i , veesN

where C'(k) is a linear combination of the unknowns b, with coefficients which
can be evaluated numerically.




Separated flow

- In the outer range ¢ <u <1 we ‘again use representation (5) for @ with weighting

In the separated flow region three representations of 3u/on in terms of u are
used. In the reversed flow range -a <u <0, close to the wall, we use

a
0

(uta) 2(1+4a)
3
f= (u+a)?

e:-

with weighting function

In the intermediate range -« <u <e, where ¢ is small and positive, we use
a

e = -———%____
(uta) *(1-u)

3 (1)
f = (e-u)(1-u) (ute)?

Substitution of Egs. (10) and (11) into Eq. (1) yields two first order ordinary

differential equations for a, and «.

functions (6). The coefficients b, are determined from the same equation (9).
This approach is currently being applied to model separated flow problems.
APPLICATION OF MIR TO TURBULENT BOUNCARY LAYERS

The key to the extension of the lMethod of Integral Relations to apply to turbu-
Tent boundary layer flow is in the representation of the eddy viscosity as a
function of mean streamwise velocity component. This was investigated by Abbott
and Deiwert (1968) and by Murphy and Rose (1968). Althougn their models of eddy
viscosity were reasonable these were not well adapted to the original formula-
tion of MIR and produced disappointing results. On the other hand, when the
modified, orthonormal, version of MIR is applied to turbuient boundary layers, |
with representations of eddy viscosity similar to those used previously, compari-
sons of applications to experimental results in mocel cases prove to be very 4
satisfactory. This advance is described in Yeung and Yang (1981). '

The turblent boundary layer equations in two dimensions may be written

U, AU, 13, D, . AU
Ukt Vo 5 ax T 3y L{v + =) ay] . (12)
ou , oV
oX * oy 0 (13)

where u and v are the x and y components of mean velocity, p is the mean pressure,
p the density, v the kinematic viscosity. The eddy viscosity € is given by

UV =g N : (14)
representing the Reynolds stress.

We introduce the dimensionless variables

172 u
U=u_u_,v=.y_&ﬁ____’x= :LRe.__.._’U =-u—e— (]5)
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Re = u L/v . (16)

Bernoulli's equation gives

du
' Yap. e
g o ax Ve Tdx _ (17)

and Eqs. (12) and (13), in the dimensionless variables, become

du
vy ) s L2 e g Yy (18)
ax Yy e dx e ay s ay
du
W, W, Ve (19)
X 3y e dx

To apply the Method of Integral Relations we introduce a complete set of ortho-
normal functions (over (0,1)) f;(U), multiply Eq. (18) by f}, add the result and
integrate with respect to ¥ across the boundary layer. e then change the
variable of integration from y to U, introducing the reciprocal of the transverse
mean velocity gradient

-1
2= (&Y (20)
ay
The basic integral relation is then
3 5 (! p e o
' : —:J . UZdu = u_’_—J [(1-u%)f} -uf, Jzdu
‘ ax ‘0 e dx ‘o _
1 I T AP
T ;(0) 5 --U—J (1+2=) —Z-dU (21)
e 0 e ‘o .
The orthonormal functions fi(U) are given by
) }
- - k
fi(0) = £ e (1-0)° (22)
k=1
and
1 u
Iofkfj TR N (23)
where Syj is the Kronecker delta. We represent Z by the factored orthonormal
expansion N-1
+ .f ‘
bo jE]bJ J(U) ]
7= .y (24) g
The basic integral relation (21) then yields the following set of ordinary dif- §
ferential equations for the unknown coefficients bo’b]’bZ"" in Eq. (24;: {
i
d_ (1 f.U db. du_ 1 ‘
2 f T Ut — = U—]~—_9J [(1-u2)f;. - Uf; Jzdu E
dx ‘o dx e dx ‘o :
£1(0) 1 f! :*
-U—“—Z—-U—‘f(l»rﬁ)—z‘—du , 121,2,.00,N-] (25a)
e ‘o e’o H

and




These can be integrated subject to suitable initial conditions.

The advantages of the modified version of MIR over the original version are now
apparent. Firstly, the system of ordinary differentia)l equations [{25a) and
(25b)] can easily be reduced to diagonal form while the corresponding eguations
in the original formulation are highly coupled. Secondly, the representation
(24) for Z allows for greater flexibility in reproducing the highly inflected
velocity profile characterizing turbulent (as opposed to laminar) boundary
layers. Thirdly, in the orthonormal version, the integral

]sl.
J (1 + 5 1 eua

can be evaluated by quadrature, while in the original version this must be
reduced to an algebraic expression. This is a tedious task, increasingly dif-
ficult to carry out as the order of approximation is increased, since the term
€/u is represented by a complicated combination of exponentials and powers in U.

Turbulence modelling

The eddy viscosity </u is represented by two formulae, one based on a model due
to Spalding (1961) and Kleinstein (1967) applicable near the wall and the other,
applicable in the outer part of the boundary layer, based on the wake nodel of

. Clauser {1956). The value of U at the junction of these two representations is
denoted by Uy and is determined by conditions that the c/i.: —U curve should be
continuous with continuous slope at U =Um.

In terms of U and Z the eddy viscosity is represented by:

For 0 < U <U
m o wal/e
. 0.4U YU Z Re /
G = 0.04432[9
-7 - / 1/2 _ 2 1/2
1 -0.40 "UZ Re 0.08U°U ke /2T . (26)
For U < U<
m
€ 12 )
£ =20.0168 U Re J (1-U)zdu . (27)
M e 0

The value of Um is determined from

0.4U VuezoRe‘/Z

0.04432[e -1

- 0.4U VuezoRe’/Z - O.OSUZUGZORe]/z

‘ 1
= 0.0168 ueReV2 j (1-U)ZdU . (28)
(o]

Yeung and Yang (1981) applied this formulation to three model flows based on data
presented at the 1968 Stanford Conference on Turbulent Flows (Coles and Hirst
(1968)). The first corresponds to a zero pressure qradient (identified as ID
1400 in the Stanford proceedings), the second to adverse pressure gradient (ID
1100) and the third to favorable pressure gradient (ID 1300). In the first case
good results were obtained with the third approximation N =3 while agreement with
experiment was excellent for N =4, N=5. The CPU time for N =4 was aonly 8 secs
(using a CDC 7600 computer). In the third case sufficient accuracy was obtained
with N =3 and higher order approximations were not needed. For adverse pressure
gradient flow results were partially satifactory for N =5 but it is evident that
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the €/u model needs to be improved in this area.

The wall jet problem

Yano and Holt (1983) used the orthonormal version of MIR for turbulent boundary
layers to investigate the effect of injecting a parallel stream on turbulent

flow in a pipe. This has important applications to coal aasification systems,

in which certain products (especially sulfides and oxides) can cause serious cor-
rosion at the walls of pipes in the heat exchange section.

To simplify the problem the flow field is divided into three parts. Firstly,
Just downstream of the station where the wall jet is introduced, turbulent mixing
between the uniform flow in the pipe and uniform flow in the parallel jet is
investigated. The injected gas and main stream gas contain different species and
both turbulent and molecular diffusion are accounted for. Below the mixing
region a turbulent boundary layer develops along the wall of parallel jet and its
growth is determined by a separate application of MIR. This second part of the
flow field is not initiaily affected by the mixing process. The third part of
the flow field extends downstream of the station where the wall boundary layer
and lower part of the mixing layer intersect. The velocity profile in this
region of interaction initially has two inflexion points but the orthonorral
version of MIR is sufficiently flexible to permit a faithful representaticn of
the Z-U behavior. and the growth of this interacting flow until a full turbulent
boundary layer is developed and calculated.

The calculation establishes that introduction of a wall jet can protect a pipe
wall from corrosive effects for up to 100 jet thicknesses downstreamn.

NUMERICAL METHODS FOK UNSTEADY FLOY PROBLEMS

The equations of motion of one dimensional unsteady flow are easily reduced to
characteristic form and the earliest nurerical methods for solving problems
governed by such equations were based on the tlethod of Characteristics. The
latter has the disadvantage of being tied to a non-orthogonal cocordinate network
which has to be built up, step by step, as the numerical procedure is acvanced.
To overcorme this drawback Godunov (1959) proposed a numerical scheme for sciving
Lagrangian equations of motion which could be executed in the physical x {dis-
tance), t (time) plane. He later extended this scheme to apply to the Eulerian
equations in one or more dimensions and used this to solve the Blurt Body
Problem. These early Godunov schemes are of first order accuracy and are
monotonic in character; that is, if the initial form of the unknown is mono-
tonically increasing this property is preserved as the Godunov schemes are
applied at successive time intervals. Godunov (1970) subsequently introduced a
scheme of second order accuracy, based on a predictor-corrector approach. This
is not monotonic in character but has been successfully applied to many problems
in Gas Dynamics with plane symmetry and in Shallow Water Theory. In the period
between the publication of the two Godunov schemes, Glimm (1965) proposed a
modification of the first Godunov scheme which, in principle, has second crder
accuracy. We now give a brief comparison between Godunov's first scheme and
Glimm's scheme, using explanations of the latter by Chorin (1976,18977). The
comparison is made with reference to the one dimensional acoustic equations and
is a summary of the discussion in Holt (1984).

Solution of the acoustic wave equation

Consider the one dimensional acoustic wave equation

-—-+a——'—=0 (29)




where a is a positive constant (the acoustic speed) with initial conditions

U= f(x) , t=0 . (30)
The analytical solution to this equation is
U= f(x-at) . (31)

If the initial wave form is a Heaviside unit function

f(x) =0 , x<0
(32)
f(x) =1 , x>0
the general sclution is
U(x,t) =0 , x< at
(33)
Ulxst) =1 , x> at

representing a step function propagated unchanged along the characteristic line
x =at. .

To solve problem (29), (30) by Godunov's first scheme we divide e x axis into
a series of small cells (usually of equal spacing) and represen ‘x) by a
staircase function so that f(x) is constant in each cell. At e ~ cell bouncary
there is a discontinuity in the initial value of U and, for t > we solve the
problem of breakdown in discontinuity. In other words, we solv. a .ccession of
problems (25), (32). The same procedure is followed at ail late. c.ime intervals.

Thus, at a general time (after n time steps each of duration k) we solve the
initial value problem: Solve (29) with

Uu=20 ih <x<(i +%h t=nk
(33)
U=1 (i+%h<x<(i+1)h t=nk
If we transfer the origin {(i +%)h, nk} to (0,0) this problem has the solution
Ulx,t) =0 X< aT
(38)

Ulx,t) =1 X >aT ,

where X,T are coordinates. In the Godunov schere we always use this solution at
the cell boundary itself. To satisfy stability of the Godunov scheme we require

ah > k (36)
so that the boundary {(i +1)h, (n +%)k} is to the right of X -aT =0. Therefore,
i+l
U = ] . (37)
n+i

so that the Godunov scheme always moves the step jump 0-1 a distance !; h to the
right. As a consequence it can be shown that, after N whole time steps the
Godunov scheme causes the step jump to have moved a distance

{h/k -al}T (38)

beyond its position as given by the analytical solution.




In Glimm's scheme we record the solution to the breakdown problem (29),(34) over
a half step ranue or €ither side of the cell boundary. We then sample tris solu-
tion at a randomly chosen point within the range (-h/2,h/2) in X. The stebility
(Courant-Friedrichs-Lewy) condition ensures that the characteristic line £ =a”
intersects the line T =%k inside (-h/2,h/2). The greater flexibility in the
Glimm scheme, as compared with the first Godunov scherie, permits us to sample a
certain number of intersection points in (-%h,'.t} on botn sides of X =a7. If

the randomly chosen samples are uniformly distributed aver [-h/2,h/2) it czan be
shown that balance between samples to the left and those to the right of X =a7 is
that required to ensure that the path of the discontinuity 0-1 stays on course.
In this sense, then, the Glimm scheme is more accurate than the first Goduncy
scheme.

Shallow water wave propagation

Li and Holt (1981) applied Glinm's method to the problem of shalicw water waves |
generated by large, near surface, disturbances. The calculaticn is an ex-=ension

of the work by Sod {1977) on spherical, or cylindrical, explosions in gases and

the paper by Flores and Holt (1981) on underwater exnlosions. i and Hoit first
tested Glimm's method on the classical Dam Break Problem and then applied it <o

the Dam Break Problem with cylindrical symmetry. It was then used to calculete

large amplitude surface waves generated by near surface explosions.

The shallow water equations, omitting dissipative terms, may be written

Ut +{F(U)}r = -W(U) (39) i
where , : g
; n u(n +d) i(u/r)(n +d) '
§ u u/2 +gn 0
Z and
i =0 for plane symmetry %
i =1 for cylindrical symetry !

In Eqs. (40) & is the undisturbed ocean depth, n is the displacerent of the ocean f
surface from its undisturbed position, r is the space coordinate. |

|
Glimn's method is only applicable to equations of motion in conservation fcrm.
Following Sod (1977) we therefore solve £qs. (39) by a splitting method. We soive
the homogeneous equations

| e

} U, +{F(V)}, = 0 (41)

; by the established Glimm technique for plane flow equations and subsequentiy

§ determine the non-homogeneous term from h
t

f

i U, = -W(U) . (42) )
| t r
! To apply Glimm's method to Eqs. (41) we use h as a constant space intervai and k

as the constant time interval. After time t =nk we represent the solution by a
staircase function G? such that

U(r,nk) = Ug+] r> (i +4%)n (43)
Ur,nk) = ﬁ? r< (i +4)h




Thus U is constant in each cell, with spacing h, along the r axis and jumns dis-
continuously across each cell boundary. To determine U at t ={(n +)k we &1 0w
each cell boundary to be suddenlv removed at t =nk and solve a series of Rierann
breakdown problems to determine the solution innk <t < (n+)k. In Glirm's
method we sample this solution at a randomly chosen pcint in the range (-ih,'h)
on either side of a cell boundary. If ¢ is an equidistributed random variagble in
(~%,%) Glimm's method then gives

~N+'; .

jor, = UL #L+8)h, (n +13)k) (44)
The grid and the wave fronts used in solving successive Riemann nroblems are
shown in Fig., 1, wnile the sampling procedure is shown in Fig. 2.

After solving the Riemann problem at t ={n +'%)k the solution (43) is supstituted
in the right- hand snde of Eq. (42) which is solved as a simple difference eguation

for a corrected u : . The corrected values are used as initial data t¢ apply the
2

Glimm method in the next half time interval (n +5}k < t < nk. The Glimm solution
at t =nk is again corrected from £Eq. {42).

The solution of the Riemann problerm at each cell boundary is given by algebr

formulae, the details of which depend on the nature of the discontinuitics ¢

the boundary. Waves are propacated in both directions, when each discontingi

breaks down, and can be either expansion waves or bores {tnhe shailow water a

Zent of shocks). The Riemann problem solutions are given in full in Li and
1981).

The initial conditions for the classical Dam Break Problem are shcwn in Fig. 3
(Fig. 4,07 and Holt). The dam maintains the drop in water level shown. [t is
suddenly removed at time t =0. Subseqguently a bore is propagated to the ieft
while an expansion is propagated to the left. In tne Holt-Li caiculations a

solid wall is introduced to the left of the dam so that reflection of the bore :zan
be calculated. The solutions before and after reflection are shown in Figs. 4 ard
4. These calculations were made by the Glimm method alone, since £q. (%2 was nct
required in the plane flow case. The Holt-Li method was then applied to the
cylindrical dam break problem. In this case a cylindrical bore ccnverqged ¢cn izs
center and was reflected there, in a manner similar to a cylindrical implcsion in
a gas. The wave profiles in this case are shown in Fig. 6.

The final calculation deals with the Upper Critical Depth problem. This concerns
the generation of large amplitude surface waves by spherical explasions cetcnated
at different depths below, but near to, tne ocean surface. The pressure field
from the underwater explosion was calculated previously by Falade and Holt (1378).
The data were used to provide initial conditions in the surface wave calculaticn
using Glimm's method. Figure 7 shows the most important result of this calcula-
tion namely, that for different depths of explosive charge the maximum amplitude
of surface wave generated occurs when the charge depth is equal to ore haif of
the charge radius. This confirms the Upper Critical Depth phenomenon observed in
field tests.
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Fig. 1. Sequence of Riemann problems on grid.




((i+8)Ar, (n+172)At)
R 1 1 . 4 t=(n+1/2)A1
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Fig. 2. Sampling procedure for Glimm's scheme.
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Fig. 3. Initial condition for dam break problem.
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Fig. 4. Dam break problem with plane symmetry.
Time t =0.69.
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Fig. 5. Dam break problem with plane symmetry.
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Fig. 6. Dam break problem with cylindrical symmetry.
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